Atmos. Meas. Tech. Discuss., 7, 4373–4406, 2014 www.atmos-meas-tech-discuss.net/7/4373/2014/ doi:10.5194/amtd-7-4373-2014 © Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Measurement Techniques (AMT). Please refer to the corresponding final paper in AMT if available.

Using self organising maps to explore ozone profile validation results – SCIAMACHY limb compared to ground-based lidar observations

J. A. E. van Gijsel¹, R. Zurita-Milla², P. Stammes¹, S. Godin-Beekmann³, T. Leblanc⁴, M. Marchand³, I. S. McDermid⁴, K. Stebel⁵, W. Steinbrecht⁶, and D. P. J. Swart⁷

¹Royal Netherlands Meteorological Institute (KNMI), De Bilt, the Netherlands
 ²University of Twente, Enschede, the Netherlands
 ³LATMOS IPSL CNRS/UPMC/UVSQ, Paris, France
 ⁴NASA/JPL/California Institute of Technology, Wrightwood, USA
 ⁵Norwegian Institute for Air Research (NILU), Oslo, Norway
 ⁶German Weather Service (DWD), Hohenpeißenberg, Germany
 ⁷National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands

Received: 25 March 2014 - Accepted: 16 April 2014 - Published: 30 April 2014

Correspondence to: J. A. E. van Gijsel (anne.van.gijsel@knmi.nl)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

Traditional validation of atmospheric profiles is based on the intercomparison of two or more datasets in predefined ranges or classes of a given observational characteristic such as latitude or solar zenith angle. In this study we train a self organizing map (SOM)

- with a full time series of relative difference profiles of SCIAMACHY limb v5.02 and lidar ozone profiles from seven observation sites. Each individual observation characteristic is then mapped to the obtained SOM to investigate to which degree variation in this characteristic is explanatory for the variation seen in the SOM map. For the studied datasets, altitude-dependent relations for the global dataset were found between
- the difference profiles and studied variables. From the lowest altitude studied (18 km) ascending, the most influencing factors were found to be longitude, followed by solar zenith angle and latitude, sensor age and again solar zenith angle together with the day of the year at the highest altitudes studied here (up to 45 km). Clustering into three classes showed that there are also some local dependencies, with for instance one
- ¹⁵ cluster having a much stronger correlation with the sensor age (days since launch) between 36 and 42 km.

It was shown that the proposed approach provides a powerful tool for the exploring of differences between datasets without being limited to a-priori defined data subsets.

1 Introduction

Accurate knowledge on the quality and stability of long term measurements is required for time series trend analysis as well as for coupling multiple datasets (Nair, 2012). Remote sensing products must therefore be compared and/or validated with independent measurements of known quality (as determined by other data sources). In the case of satellite-based atmospheric columns and profiles, this validation data source is usually formed by acquisitions from other satellite sensors (e.g. Nazaryan et al., 2007; Boersma et al., 2008), ground-based and/or in-situ observers (e.g. Herman et al., 2009;

van Gijsel et al., 2010; Takele Kenea et al., 2013), the combination of both (e.g. Adams et al., 2012; Stiller et al., 2012; Wetzel et al., 2013) or with the additional inclusion of model data (e.g. Lamsal et al., 2010; Zhang et al., 2010).

Traditionally, data validation and intercomparison are made for predefined classes or ranges of possibly correlated variables which are then studied for inter-cluster differences to determine limitations in the retrieval scheme. In atmospheric validation studies, this usually comes down to dividing the global dataset into various latitude ranges, splitting observation characteristics such as solar or stellar zenith angle and viewing angle into a few groups, studying secondary retrieval output (uncertainty estimates, processing and cloud flags, goodness-of-fit measures) and occasionally adding other

- ¹⁰ processing and cloud hags, goodness-of-it measures) and occasionally adding other data (e.g. input used in the retrieval like temperature, difference in equivalent latitude). Such a procedure has various limitations. To start with, it requires a-priori knowledge, or a substantial amount of testing, on how to divide each variable (information source) into classes. Moreover, the need to have a group of classes is a limitation by itself as there might be a gradual transition from one extreme to the other and dependencies
- there might be a gradual transition from one extreme to the other and dependencies on multiple (correlated) variables further complicate the analysis procedure.

Here we will present an alternative approach to data intercomparison that traces down possible explanatory variables and patterns associated with the differences found in the datasets that are being compared and that does not require a-priori grouping

- of variables. The approach is based on the usage of self-organising maps (SOMs; Kohonen, 2001), which are a type of unsupervised artificial neural network used to perform data clustering, data-dimensionality reduction and data mining in a wide variety of application domains (Demartines and Herault, 1997; Gevrey et al., 2006; Zurita-Milla et al., 2013; Augustijn and Zurita-Milla, 2014).
- In atmospheric sciences, SOMs have mostly been used to perform some kind of classification. For instance, they have been used to detect changes in wind trends whilst separating the contributions from ozone depletion and green house gas increases (Lee and Feldstein, 2013), to study El Niño Southern Oscillation-induced variation in tropical convection (Sakai and Iseri, 2010), to perform a climatological analysis of Northern

Atlantic mean sea level pressure (Reusch et al., 2007), to relate increased in predicted precipitation in Greenland to changes in synoptic weather patterns (Schuenemann and Cassano, 2010) and to classify ozone profiles obtained with balloon sondes at two tropical sites (Jensen et al., 2012). However, to the best of our knowledge, SOMs have not

- ⁵ been used for the application proposed here despite the fact that they are likely more robust and effective than traditional methods. This is supported by Hsieh (2004) who compared nonlinear methods (including SOMs and other neural networks) and more traditional methods such as canonical correlation analysis, principal component analysis (PCA), rotated PCA, single spectrum analysis and Fourier spectrum analysis and
- showed that traditional methods may be limited in their capacity to capture geophysical patterns properly, especially when the data is no longer in the linear domain. Thus, SOMs might be better suited to point out weaknesses in retrieval algorithms caused by non-linear effects (e.g. abrupt changes caused by sensor degradation during the satellite's lifetime).
- The remainder of this article is organised as follows: Sect. 2 introduces the two datasets used to illustrate this study and explains the five steps of the proposed approach. Section 3 provides details on how the approach was applied to the SCIA-MACHY vs. lidar ozone profile differences for each step and discusses the results. Section 4 presents our conclusions.

20 2 Data and methods

To illustrate the proposed SOM-based approach to intercompare data, we will use ozone profiles derived from SCIAMACHY limb measurements as well as from ground-based lidar stations. The next two subsections first describe these two datasets and the following section will detail the five steps of the proposed approach.

2.1 SCIAMACHY version 5.02 ozone profile data

SCIAMACHY stands for SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY. This instrument was launched on board ENVISAT, which was operational between March 2002 and April 2012, with first SCIAMACHY data from August 2002. SCIAMACHY is a passive remote sensing spectrometer observing backscattered, reflected, transmitted or emitted radiation from the Earth's surface and atmosphere, in the wavelength range between 240 and 2380 nm and in three measurement modes: occultation, nadir and limb geometry (Burrows et al., 1995; Bovensmann et al., 1999). In limb viewing mode, scans are made in steps of 3.3 km from (close to) the surface to an altitude of 92 km. The vertical resolution of the retrieved ozone pro-

- the surface to an altitude of 92 km. The vertical resolution of the retrieved ozone profile product is typically ranging between 3 and 4 km. Here SCIAMACHY ozone number density data is extracted from the ozone profile product of the operational algorithm (level 2 version 5.02). The data retrieved in this version are most useful for altitudes between about 15 and 40 km because there is a reduced sensitivity to ozone above 40 km
- and below 20 km, leading to substantially increased retrieval errors at those altitudes (European Space Agency, 2011, 2013). The data are accompanied by quality flags indicating the validity and quality of the retrieved product (European Space Agency, 2013). Initial validation results for version 5.01 (which is for ozone profiles equivalent to version 5.02) showed a positive bias in the tropics, especially below 20 km, a good agreement (within 5.02) is the wild be the data are accompanied for the male provide the product of the product
- (within 5 %) in the mid-latitudes and a variable bias was observed for the polar regions, with larger deviations above 35 km (European Space Agency, 2011, 2013).

2.2 Ground-based NDACC lidar data

In this study we have used ozone profiles obtained by ground-based lidars that are part of the Network for the Detection of Atmospheric Composition Change (NDACC; http://www.ndacc.org; Kurylo and Solomon, 1990). To become associated with NDACC,

http://www.ndacc.org; Kurylo and Solomon, 1990). To become associated with NDACC, it is obligatory to have a good description of the data quality through intercomparison of at least the retrieval software, followed by intercomparison with other instruments. The

latter can be done with other instruments such as sondes, or with the NDACC travelling standard, the NASA GSFC (Goddard Space Flight Center) lidar. Ozone profiles are retrieved using differential absorption in sets of two wavelengths in the ultraviolet domain, where ozone is in each set only strongly absorbed at one of the two wavelengths. The

- difference of the slope of the logarithm of the retrieved lidar signals as a function of altitude is used to determine the ozone number density profile. The retrieval is as such self-calibrating. All of the lidars used operate under night-time conditions. The altitude range with the highest data quality is mostly ranging between 20 and 35 km (Keckhut et al., 2004), depending on laser power, optics and local atmospheric conditions. As
- the signal-to-noise ratio decreases with altitude, the retrieval error correspondingly increases, which can be partially compensated by increasing the vertical resolution. Typically the vertical resolution increases from several hundreds of meters in the lower stratosphere to several kilometres in the upper stratosphere (Godin et al., 1999).

In this study we used the following seven lidar sites (see Table 1 for their coordinates): Alomar (Norway), Hohenpeissenberg (Germany), Observatoire Haute Provence (France), Table Mountain (California), Mauna Loa (Hawaii), Lauder (New Zealand) and Dumont d'Urville (Antarctica). Four of the sites are located in the midlatitudes, two in the polar regions and one in the tropics.

2.3 Methodology

²⁰ The flowchart in Fig. 1 summarizes the SOM-based approach as a series of five steps. In the first step, the data are prepared as input for the neural network. This involves the data selection (quality and collocation criteria), a calculation of the differences between the datasets and includes a data normalisation to set the variance to unity.

The normalised differences are used to train the self-organising map in the second step. The result of the training is a self-organised map where each neuron now has a normalised difference for each altitude that is similar to, but distinct from its neighbours, and is representative of one or multiple input vectors, but not necessarily identical to it (i.e. the vector of normalised differences is likely a weighted average of multiple

input vectors) as also the neighbourhood affects the values assigned to one neuron. This set of representative normalised difference vectors are called the codebook vectors, which is a three-dimensional matrix (composed by the two dimensions of the SOM together with the altitude vector). For each altitude we can visualise these codebook
vectors as a map, which will be called a component plane. In addition, we can also derive which neuron has the most similar normalised differences as the input data, so it is known for each input data vector to which neuron it maps. This information is called

the mapping index.

25

In the third step, the mapping indices are used to create maps of each explanatory variable (EV) with the same dimensions as the SOM. When multiple input vectors (IDs) map to the same neuron, it is necessary to calculate a mode, mean or median (depending on the type of variable) of the EV values of those IDs to associate to that neuron.

The codebook vectors can be clustered to help identify patterns that are present over the entire range of altitudes in the fourth step. Such a clustering is exemplified by the three colours in cluster block in Fig. 1.

The fifth and final part of the analysis is to study the relations between the component planes (the codebook vectors) and the explanatory variables, both on a global scale (entire dataset) and on a more detailed (local) level inside the clusters. This is

²⁰ done using visual inspection of the patterns in the codebook vectors and EVs and by correlation analysis.

3 Practical implementation and discussion of results

To illustrate the analytical methods described in the previous section, in this section we present a detailed example following the five steps. Note that the third and fourth step can be executed in parallel (i.e. their relative order is arbitrary).

3.1 Data selection, collocation and preprocessing

We selected all SCIAMACHY and lidar ozone number density data from the period 2002–2012 having a reported error of 30 % or less and having valid processing flags. Collocations of SCIAMACHY and ground-based lidar ozone profiles were sought within

- ⁵ 20 h and 800 km. The profiles are interpolated to a common altitude grid with a 1 km resolution using a nearly linear spline, followed by the calculation of the relative differences with respect to the lidar as follows: SCIAMACHY-lidar × 100%. The resulting dataset consists of over 25 000 difference profiles between the collocated pairs, together with metadata (i.e. EVs) providing information on the observation characteristics. Here we further filtered the data to remove partial profiles; that is, where not at all altitudes
- between 18 and 45 km data were available for both the lidar and SCIAMACHY observations (see Fig. 2 where the fraction of not available data is indicated for each altitude).

This filtered dataset consists of 13746 difference profiles with the matching metadata, which corresponds to 54% of the input data having information for all selected altitudes. The histograms of the differences per altitude show close to Gaussian distributions, except for the lowest altitudes where the distribution is somewhat skewed, which is also visualised in the box plots shown in Fig. 3.

The differences are normalised to set the variance to unity. As the transformation is linear, the distribution shapes are preserved. Figure 4 shows the correlation of the normalised relative differences between the 28 altitude bins. The correlation ranges between -0.09 and 0.95 (off-diagonal). It can be seen that differences at low altitudes are hardly correlated to those at higher altitudes and that at higher altitudes similar differences are found over a larger range of nearby altitudes.

25 3.2 Training of the SOM

The normalised data were used to train a SOM. Here we used the SOM toolbox for MATLAB version 2.0 beta by Alhoniemi, Himberg, Parhankangas and Vesanto available

at http://www.cis.hut.fi/projects/somtoolbox. The self-organising map was set up as a lattice grid of 46 by 75 hexagonal neurons. The dimensions were chosen to theoretically allow an average of four input vectors to map onto a single neuron, which was chosen as a trade-off between complexity and over-simplification. Different ratios determine the level of detail that can be studied, but the principles remain the same. In the case of a greatly extended geographical input space, one could additionally go for a high-resolution representation with more neurons than input vectors (Skupin and Esperbé, 2011).

The training was done in two phases. The initial phase consisted of 200 iterations where a rough training was carried out with an initial neighbourhood covering a radius of 10 neurons which gradually decreased to cover a radius of 2.5 neurons at the end of this phase. The second, fine-tuning phase was then run for 400 iterations with a neighbourhood covering a radius of 2.5 neurons gradually decreasing to a radius of a single neuron at the end of the training. In both cases we have used the batch training algorithm.

Most of the neurons (nearly 75%) get organised with inputs from one to two sites, about 18% with inputs from three sites and very few (less than 5% in total) can be related to four or five sites. Assignation of six or all seven sites to the same neuron does not occur. Overall, this indicates that the relative differences between SCIAMACHY and

the lidar ozone profiles appear to be (indirectly) location dependent to some extent. No input data get mapped onto 81 neurons (~ 2 %), which indicates that some difference values in the SOM space do not occur.

Component planes

Figure 5 presents the component planes for the 28 altitudes (18 km in the upper left cor-²⁵ ner, 45 km in the lower right corner). The codebook vectors have been de-normalised, so that the units correspond to the original relative differences. We can observe that at the lowest altitudes (18 and 19 km) most neurons have values for the relative differences that are close to zero, but some spots with higher deviations stand out like the

upper right corner with the most extreme outliers and multiple regions (cyan-coloured) with a similar positive deviation. With ascending altitude, we can see that although at low altitudes these differences were similar, higher-up they are clearly distinct. For instance, the blob with positive differences at the bottom of the 18 km panel is associated

with negative deviations around 20–21 km and higher up with relatively small deviations from zero whereas the blob at the upper right corner remains a positive bias for many kilometres.

The organisation of the differences has also led to a small increase of the correlation between near altitudes as less representative samples get to play a smaller role.

¹⁰ Overall patterns (as visible in Fig. 4 and its discussion) are nevertheless preserved.

3.3 Mapping the explanatory variable (EV) planes

Using the mapping indices and the IDs of each data sample, we can link the explanatory variables to the neuron where the corresponding set of relative differences for the 28 altitudes mapped. In this way, the information is summarised and organised fol-

¹⁵ lowing the spatial structure defined during the training of the SOM using the relative differences. This allows us to visually identify patterns and the relative importance of the selected EVs. Here we have considered eleven variables which are also often used in traditional validation studies (see Table 2).

When more than one input data sample maps onto the same neuron, a representative EV value was calculated considering the data type of the EV. For the scan direction, the location and the day of the year, we used the mode function. For the rest of the EVs, the mean function was used. The difference in time between the lidar and SCIAMACHY observation was taken as an absolute difference, disregarding whether the lidar or SCIAMACHY observation was acquired first. Using other statistics such as the median instead of the mean, did not affect the patterns much, indicating that the

the median instead of the mean, did not affect the patterns much, indicating that the organisation is consistent.

Figure 6 shows the eleven EVs mapped onto the SOM. The white dots represent empty neurons (no data mapped onto them). Some variables like the scan direction

and difference in time or distance between the observations appear to lack any organisation. In other words, they exhibit a random distribution in the SOM space. Other EVs, like the latitude of the SCIAMACHY observation, show a clear organisation and thus are significant to explain the organisation of the relative differences. We can also

see that some of the EV patterns are similar (for example location and longitude). This evidences a relationship between the different EVs. A third group of EVs is composed by those variables that appear to be quite randomly distributed except for some spots where they get grouped consistently. Days since launch and difference in equivalent latitude belong to this third EV group, which points at secondary dependences or perhaps
 indicates a behaviour that is local rather than global.

The downward pointing triangular area that can be seen in the solar azimuth angle (low angles; dark blue) and the coordinates of the SCIAMACHY observation (latitude of about 50°, red; mean longitude of around 0°, green) mapped onto the SOM appears to be linked with a similarly shaped area in the component planes of altitudes of $30 \pm 5 \text{ km}$ showing a small to negligible underestimation of the ozone profiles by SCIAMACHY.

3.4 Correlation hunting

20

The patterns in the codebook vectors and the mapped EVs can be directly compared by calculating the correlation coefficient between each EV and the codebook vector for a given altitude. This provides a convenient way to visualise the dependence of the differences dataset on a given variable at a specific altitude. However, it is not the same as using the original input data to calculate such correlations, as the data have been summarised and approximated by the codebook vectors when they were organised. The mapped EVs represent a synopsis of the original data in a similar manner.

Figure 7 presents the correlations between the component planes and the EVs for the global dataset. We can see that at the lowest altitudes studied here, the relative differences seem to be most dependent on the longitude of the SCIAMACHY observations. Continuing upwards, the most dominant, but relatively weak, factor becomes the solar zenith angle, followed by the latitude of the SCIAMACHY observation at the

CC D

ozone maximum. We can see that the solar azimuth angle is strongly coupled to the latitude of the observation and the solar zenith angle to a lesser extent as well. Then above 36 km, the differences are in some part organised according to the age of the sensor (days since launch). At the highest altitudes, we see again the solar zenith angle

- ⁵ having the largest correlation with the organised differences, but also some seasonal effect through the day of the year. The data selection procedure is also shown to be quite adequate, as no dependence is observed on the difference in time or space between the lidar and SCIAMACHY observations. There is however a small contribution to the distribution of differences by the difference in equivalent latitude, mostly around
- ¹⁰ the ozone maximum and around 20 km. The effect of the scan angle on the distribution of the differences on a global basis seems to be marginal and is only somewhat influencing around 22 km.

Naturally, there will be more factors involved in the distribution of differences between the lidar and SCIAMACHY ozone profiles, for instance influences from the level

¹⁵ 1 processing (calibration errors) or the sensor's sensitivity. Our intention here is to demonstrate the possibilities of the proposed approach and we have thus limited the explanatory variables to those commonly selected in validation studies. We do note that when additional information becomes available during the course of a study, the approach allows to very simply and quickly extend the analysis with those new vari-20 ables.

3.5 Clustering

25

We have clustered the codebook vectors using simple *k*-means. Different numbers of clusters were tested for consistency and the experiment was repeated 100 times to see the stability of the obtained solutions as the clustering may be sensitive to the initialisation/seeding values and get trapped in a local optimum (Tzortzis and Likas, 2014). Various algorithms exist that try to optimise the number of clusters, based on the principle that similarity is indicated by the inter- and/or intra-cluster distances in the data space (e.g. Davies and Bouldin, 1979; Tibshirani et al., 2001; Caliński and Harabasz,

1974). However, no clear optimum might be found if the clusters present gradual transitions. A further limitation is that patterns visible to the eye at a single altitude may not be identified by the clustering algorithm run on the entire set of codebook vectors as one altitude has a relatively low weight on the total dataset.

- Four indices were chosen to examine the clustering efficiency: the Davies–Bouldin index (considers the ratio of the intra-cluster scatter to the inter-cluster separation), the weighted inter-intra index (the ratio of weighted average inter-cluster to weighted average intra-cluster similarity), the silhouette index (measure of how close each point in one cluster is to points in the neighbouring clusters) and the Caliński–Harabasz
- index (considers the ratio of the inter-cluster variance to the intra-cluster variance). The Davies–Bouldin index has to be minimised whereas the other three indices have to be maximised. Figure 8 shows the values for the four indices when running a *k*-means classification of the codebook vectors for two to 80 clusters. All four indices indicate that the optimal number of clusters is equal to three.
- The codebook vectors were grouped into three clusters following the optimum number of clusters indicated by the indices. Figure 9 shows the resulting clustering obtained in 80 % of the runs. Two small "islands" of other clusters can be seen inside the first cluster. This could be due to the clustering not being totally successful (for instance, due to gradual transitions of the data) or an imperfect organisation by the SOM.
- Alternatively, one could argue that visually more than three clusters can be identified given the patterns in the component planes where clearly small groups can be seen at certain altitudes. The choice is therefore depending on the level of detail required by the user. For the purpose of illustration and comparison between clusters, visualisation of three clusters is assumed to be sufficiently adequate besides this choice being supported by the cluster validity indices.

Additionally, clustering could also be done based on an EV when the differences have been shown to be dependent on this variable. Such a sub-selection is then to be defined by the user.

Cluster-wise correlation hunting

Section 3.4 has presented the correlations for the full set of explanatory variables and the SOM's component planes, providing a global overview. More complex relations might be obtained when examining the relations inside clusters. It is possible that some

⁵ parts of the dataset respond to different variables (local relations) or behave in an opposite manner, which then do not show up as a significant correlation in the global analysis.

We have repeated the correlation analysis for the three clusters created from the codebook vectors in the previous section.

- Figure 10 shows the correlations between the codebook vectors and the mapped EVs for the three clusters. We can see that some details are very distinct for the different clusters. For instance, the dependence on latitude at higher altitudes appears to be much lower for the third cluster in comparison to the first two clusters. The third cluster mostly contains data originating from the northern mid-latitudes, yet this limited
- Iatitudinal coverage does not affect the correlation for altitudes between 24–34 km substantially and another process must be responsible for this. In contrast, a substantial correlation with the days since launch between 36 and 42 km has appeared for this third cluster. Also the dependence on the scan direction is stronger for the different clusters than for the global dataset. For the second cluster some correlation with the
- distance between the SCIAMACHY and lidar observations has appeared for the middle part of the selected altitude range, coincident with a stronger correlation with longitude and with the scan angle for those altitudes. This should be studied in more detail. Another observation is that for all altitudes the strongest dependence on latitude (highest negative correlation) and solar zenith angle (highest positive correlation) is found for
- the second cluster, which also contains the largest variation in latitudes covered by the input data. The solar zenith angle has a greater negative correlation for the third cluster. Observations such as these made here should be of interest for the teams working on the retrieval algorithms, as they can focus on studying why these parameters/variables

4388

have such an impact on the observed differences between SCIAMACHY and the lidar ozone profiles.

4 Conclusions

In this article we have presented an alternative and novel approach to intercompare datasets and explore (dis)similarity patterns and their possible causes. The approach is based on the use of self-organising maps (SOMs) and was applied to atmospheric ozone profiles (satellite and ground-based). More precisely, the proposed approach was illustrated using SCIAMACHY limb ozone profile data (level 2 version 5.02 of the operational product) and ground-based lidar ozone profiles around seven observation sites.

Following profile collocation and data quality filtering, relative differences between the two instruments were calculated for altitudes between 18 to 45 km, and subsequently normalised using the variance (preserving the distribution). A SOM was batch-trained in two phases using these normalised relative differences.

- ¹⁵ After that the role of eleven selected explanatory variables (EVs, related to location, data collocation criteria and observational characteristics) was studied by mapping these onto the trained SOM. For this, we relied on the ID that links each set of ozone profile differences to the explanatory variables. Through visual inspection of the patterns formed on the two-dimensional SOM and through correlation analysis, rela-
- tions between the self-organised differences and the various of explanatory variables became apparent, directly linking the differences between the SCIAMACHY and lidar profiles with these EVs without having to a priori specify certain conditions or ranges of values for the explanatory variables (current common practice in data intercomparison exercises).
- ²⁵ At the lowest altitudes studied here, the largest influencing factor determining the patterns of relative differences seemed to be the longitude of the SCIAMACHY observations. Higher up, the most dominant, but relatively weak, factor became the solar

zenith angle, followed by the latitude of the SCIAMACHY observation at the ozone maximum. The solar azimuth angle was strongly coupled to the latitude of the observation and the solar zenith angle to a lesser extent as well. Above 36 km, the differences were in some part organised according to the age of the sensor (days since launch). At the

- ⁵ highest altitudes, the solar zenith angle again had the largest correlation with the organised differences, but also some seasonal effect appeared to play a role visualised by the day of the year. The data selection procedure was also shown to be quite adequate, as no dependence was observed on the difference in time or space between the lidar and SCIAMACHY observations. There was however a small contribution to the
- distribution of differences in the ozone profiles by the difference in equivalent latitude between the two observations, mostly around the ozone maximum and around 20 km. The effect of the scan angle on the distribution of the differences on a global basis seemed to be marginal and is only somewhat influencing around 22 km.

Further details were obtained by clustering the SOM component planes (i.e. the values of the self-organised differences at multiple heights) into three clusters and investigating the differences between the clusters in terms of the explanatory variables. Although the general patterns were similar, some of the details were very distinct for the different clusters. For example, in the third cluster the dependence on latitude at higher altitudes appeared to be much lower in comparison to the other clusters. The

- third cluster mostly contained data originating from the northern mid-latitudes, yet this limited latitudinal coverage did not substantially affect the correlation for altitudes between 24–34 km and it is postulated that another process must be responsible for this. In contrast, a substantial correlation with the days since launch between 36 and 42 km appeared for this cluster. Also the dependence on the scan direction was stronger for
- ²⁵ the different clusters than for the global dataset. For the second cluster some correlation with the distance between the SCIAMACHY and lidar observations showed up for the middle part of the selected altitude range, coincident with a stronger correlation with longitude and with the scan angle for those altitudes, which should be further studied.

Summarising, the approach has shown the potential to study relations between observed differences between two datasets and possible underlying factors without making prior assumptions on which factors are of interest. It is simple to add EVs to the analysis and no a-priori division into ranges of values for the variables is required. The

- ⁵ level of detail can be optimised by adjusting the SOM size and by looking at clusters inside the SOM, local relations may be studied. The proposed approach is thus offering a fresh and unbiased look at differences between datasets and is very useful to point out where further focus should be laid to investigate the origins of the differences and to enhance the underlying algorithms and/or models.
- Acknowledgements. The authors would like to acknowledge financial support from the European Space Agency (ESA) through the VALID-2 project and the Netherlands Space Office (NSO) through the NL-SCIAvisie project led by Ilse Aben (Netherlands Institute for Space Research (SRON)).

References

- Adams, C., Strong, K., Batchelor, R. L., Bernath, P. F., Brohede, S., Boone, C., Degenstein, D., Daffer, W. H., Drummond, J. R., Fogal, P. F., Farahani, E., Fayt, C., Fraser, A., Goutail, F., Hendrick, F., Kolonjari, F., Lindenmaier, R., Manney, G., McElroy, C. T., McLinden, C. A., Mendonca, J., Park, J.-H., Pavlovic, B., Pazmino, A., Roth, C., Savastiouk, V., Walker, K. A., Weaver, D., and Zhao, X.: Validation of ACE and OSIRIS ozone and NO₂ measurements using ground-based instruments at 80° N, Atmos. Meas. Tech., 5, 927–953, doi:10.5194/amt-5-927-2012, 2012.
 - Augustijn, P. W. M. and Zurita-Milla, R.: Self-organizing maps as an approach to exploring spatiotemporal diffusion patterns, Int. J. Health Geogr., 12, 60, doi:10.1186/1476-072X-12-60, 2014.
- ²⁵ Boersma, K. F., Jacob, D. J., Eskes, H. J., Pinder, R. W., Wang, J., and van der A, R. J.: Intercomparison of SCIAMACHY and OMI tropospheric NO₂ columns: observing the diurnal evolution of chemistry and emissions from space, J. Geophys. Res., 113, D16S26, doi:10.1029/2007JD008816, 2008.

Bovensmann, H., Burrows, J. P., Buchwitz, M., Frerick, J., Noël, S., Rozanov, V. V., Chance, K. V., and Goede, A. P. H.: SCIAMACHY: mission objectives and measurement modes, J. Atmos. Sci., 56, 127-150, doi:10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2, 1999.

5 Burrows, J. P., Hölzle, E., Goede, A. P. H., Visser, H., and Fricke, W.: SCIAMACHY – Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, Acta Astronaut., 35, 445-451, doi:10.1016/0094-5765(94)00278-T, 1995.

Caliński, T. and Harabasz, J.: A dendrite method for cluster analysis, Commun. Stat., 3, 1–27, doi:10.1080/03610927408827101.1974.

Davies, D. L. and Bouldin, D. W.: A cluster separation measure, IEEE T. Pattern Anal., PAMI-1, 10 224-227. doi:10.1109/TPAMI.1979.4766909. 1979.

Demartines, P. and Herault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE T. Neural Networ., 8, 148-154. doi:10.1109/72.554199. 1997.

European Space Agency: Disclaimer for SCIAMACHY Level 2 data version SCIA-15 MACHY/OL5.02 (ENVI-GSOP-EOGD-QD-11-0110), available at: https://earth.esa.int/ documents/10174/24074/SCI OL 2P README.pdf (last access: 12 January 2014), 2011.

European Space Agency: Readme file for SCIAMACHY Level 2 version 5.02 products -

- Issue 1.2 (ENVI-GSOP-EOGD-QD-13-0118), available at: https://earth.esa.int/handbooks/ 20 availability/disclaimers/SCI OL 2P README.pdf (last access: 12 January 2014), 2013. Gevrey, M., Worner, S., Kasabov, N., Pitt, J., and Giraudel, J.-L.: Estimating risk of events using SOM models: a case study on invasive species establishment, Ecol. Model., 197, 361–372, doi:10.1016/j.ecolmodel.2006.03.032, 2006.
- ²⁵ Godin, S., Carswell, A. I., Donovan, D. P., Claude, H., Steinbrecht, W., McDermid, I. S., McGee, T. J., Gross, M. R., Nakane, H., Swart, D. P. J., Bergwerff, H. B., Uchino, O., von der Gathen, P., and Neuber, R.: Ozone differential absorption lidar algorithm intercomparison, Appl. Optics, 38, 6225–6236, doi:10.1364/AO.38.006225, 1999.

Herman, J., Cede, A., Spinei, E., Mount, G., Tzortziou, M., and Abuhassan, N.: NO₂ column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun 30 DOAS technique: intercomparisons and application to OMI validation, J. Geophys. Res., 114, D13307. doi:10.1029/2009JD011848. 2009.

Printer-friendly Version

Interactive Discussion

- Hsieh, W. W.: Nonlinear multivariate and time series analysis by neural network methods, Rev. Geophys., 42, RG1003, doi:10.1029/2002RG000112, 2004.
- Jensen, A. A., Thompson, A. M., and Schmidlin, F. J.: Classification of Ascension Island and Natal ozonesondes using self-organizing maps, J. Geophys. Res., 117, D04302, doi:10.1029/2011JD016573, 2012.
- Keckhut, P., McDermid, I. S., Swart, D. P. J., McGee, T. J., Godin-Beekmann, S., Adriani, A., Barnes, J., Baray, J.-L., Bencherif, H., Claude, H., Fiocco, G., Hansen, G. H., Hauchecorne, A., Leblanc, T., Lee, C. H., Pal, S., Mégie, G., Nakane, H., Neuber, R., Steinbrecht, W., and Thayer, J.: Review of ozone and temperature lidar validations performed within the framework of the Network for the Detection of Stratospheric Change, J. Environ.
 - Monitor., 6, 721–733, doi:10.1039/B404256E, 2004.

5

15

- Kohonen, T.: Self-Organizing Maps, 3rd Edn., Springer-Verlag, New York, USA, 502 pp., 2001. Kurylo, M. J. and Solomon, S.: Network for the detection of stratospheric change: a status and implementation report, Issued by NASA Upper Atmosphere Research Program and NOAA Climate and Global Change Program, Washington DC, 1990.
- Lamsal, L. N., Martin, R. V., van Donkelaar, A., Celarier, E. A., Bucsela, E. J., Boersma, K. F., Dirksen, R., Luo, C., and Wang, Y.: Indirect validation of tropospheric nitrogen dioxide retrieved from the OMI satellite instrument: insight into the seasonal variation of nitrogen oxides at northern midlatitudes, J. Geophys. Res., 115, D05302, doi:10.1029/2009JD013351, 2010.
 - Lee, S. and Feldstein, S. B.: Detecting ozone- and greenhouse gas-driven wind trends with observational data, Science, 339, 563, doi:10.1126/science.1225154, 2013.
 - Nair, P. J., Godin-Beekmann, S., Froidevaux, L., Flynn, L. E., Zawodny, J. M., Russell III, J. M., Pazmiño, A., Ancellet, G., Steinbrecht, W., Claude, H., Leblanc, T., McDermid, S., van Gi-
- jsel, J. A. E., Johnson, B., Thomas, A., Hubert, D., Lambert, J.-C., Nakane, H., and Swart, D. P. J.: Relative drifts and stability of satellite and ground-based stratospheric ozone profiles at NDACC lidar stations, Atmos. Meas. Tech., 5, 1301–1318, doi:10.5194/amt-5-1301-2012, 2012.
- Nazaryan, H., McCormick, M. P., and Russell III, J. M.: Comparative analysis of SBUV/2 and HALOE ozone profiles and trends, J. Geophys. Res., 112, D10304, doi:10.1029/2006JD007367, 2007.

Reusch, D. B., Alley, R. B., and Hewitson, B. C.: North Atlantic climate variability from a selforganizing map perspective, J. Geophys. Res., 112, D02104, doi:10.1029/2006JD007460, 2007.

Sakai, K., Kawamura, R., and Iseri, Y.: ENSO-induced tropical convection variability over the

- Indian and western Pacific oceans during the northern winter as revealed by a self-organizing map, J. Geophys. Res., 115, D19125, doi:10.1029/2010JD014415, 2010.
 - Schuenemann, K. C. and Cassan, J. J.: Changes in synoptic weather patterns and Greenland precipitation in the 20th and 21st centuries: 2. Analysis of 21st century atmospheric changes using self-organizing maps, J. Geophys. Res., 115, D05108, doi:10.1029/2009JD011706, 2010.
 - Skupin, A. and Esperbe, A.: An alternative map of the United States based on an n-dimensional model of geographic space, J. Visual. Lang. Comput., 22, 290–304, doi:10.1016/j.jvlc.2011.03.004, 2011.

Stiller, G. P., Kiefer, M., Eckert, E., von Clarmann, T., Kellmann, S., García-Comas, M.,

- ¹⁵ Funke, B., Leblanc, T., Fetzer, E., Froidevaux, L., Gomez, M., Hall, E., Hurst, D., Jordan, A., Kämpfer, N., Lambert, A., McDermid, I. S., McGee, T., Miloshevich, L., Nedoluha, G., Read, W., Schneider, M., Schwartz, M., Straub, C., Toon, G., Twigg, L. W., Walker, K., and Whiteman, D. N.: Validation of MIPAS IMK/IAA temperature, water vapor, and ozone profiles with MOHAVE-2009 campaign measurements, Atmos. Meas. Tech., 5, 289–320, doi:10.5194/amt-5-289-2012, 2012.
- Takele Kenea, S., Mengistu Tsidu, G., Blumenstock, T., Hase, F., von Clarmann, T., and Stiller, G. P.: Retrieval and satellite intercomparison of O₃ measurements from ground-based FTIR Spectrometer at Equatorial Station: Addis Ababa, Ethiopia, Atmos. Meas. Tech., 6, 495–509, doi:10.5194/amt-6-495-2013, 2013.
- Tibshirani, R., Walther, G., and Hastie, T.: Estimating the number of clusters in a dataset via the Gap statistic, J. R. Stat. Soc. B, 63, 411–423, doi:10.1111/1467-9868.00293, 2001.
 Tzortzis, G. and Likas, A.: The MinMax *k*-means clustering algorithm, Pattern Recogn., 47,2505–2516, doi:10.1016/j.patcog.2014.01.015, 2014.

van Gijsel, J. A. E., Swart, D. P. J., Baray, J.-L., Bencherif, H., Claude, H., Fehr, T., Godin-

Beekmann, S., Hansen, G. H., Keckhut, P., Leblanc, T., McDermid, I. S., Meijer, Y. J., Nakane, H., Quel, E. J., Stebel, K., Steinbrecht, W., Strawbridge, K. B., Tatarov, B. I., and Wolfram, E. A.: GOMOS ozone profile validation using ground-based and balloon sonde

10

measurements, Atmos. Chem. Phys., 10, 10473–10488, doi:10.5194/acp-10-10473-2010, 2010.

- Wetzel, G., Oelhaf, H., Berthet, G., Bracher, A., Cornacchia, C., Feist, D. G., Fischer, H., Fix, A., Iarlori, M., Kleinert, A., Lengel, A., Milz, M., Mona, L., Müller, S. C., Ovarlez, J., Pap-
- ⁵ palardo, G., Piccolo, C., Raspollini, P., Renard, J.-B., Rizi, V., Rohs, S., Schiller, C., Stiller, G., Weber, M., and Zhang, G.: Validation of MIPAS-ENVISAT H₂O operational data collected between July 2002 and March 2004, Atmos. Chem. Phys., 13, 5791–5811, doi:10.5194/acp-13-5791-2013, 2013.

Zhang, L., Jacob, D. J., Liu, X., Logan, J. A., Chance, K., Eldering, A., and Bojkov, B. R.:

- ¹⁰ Intercomparison methods for satellite measurements of atmospheric composition: application to tropospheric ozone from TES and OMI, Atmos. Chem. Phys., 10, 4725–4739, doi:10.5194/acp-10-4725-2010, 2010.
 - Zurita-Milla, R., van Gijsel, J. A. E., Hamm, N. A. S., Augustijn, P. W. M., and Vrieling, A.: Exploring spatiotemporal phenological patterns and trajectories using self-organizing maps,
- ¹⁵ IEEE T. Geosci. Remote, 51, 1914–1921, doi:10.1109/TGRS.2012.2223218, 2013.

AMTD 7, 4373–4406, 2014			
SCIAMACHY limb compared to ground-based lidar observations			
J. A. E. van Gijsel et al.			
Title Page			
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
I	۶I		
	•		
Back	Close		
Full Screen / Esc			
Printer-friendly Version			
Interactive Discussion			

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

 Table 1. Locations of the used lidar stations.

Site name	Latitude	Longitude
Alomar	69.3° N	16.0° E
Dumont d'Urville	66.6° S	140.0° E
Hohenpeißenberg	47.8° N	11.0° E
Lauder	45.0° S	169.7° E
Mauna Loa	19.5° N	155.6° W
Observatoire Haute Provence	43.9° N	5.7° E
Table Mountain	34.4° N	117.7° W

AMTD 7, 4373–4406, 2014			
SCIAMACHY limb compared to ground-based lidar observations			
J. A. E. van Gijsel et al.			
Title			
Inte	little Page		
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
14	►I		
Back	Close		
Full Screen / Esc			
Printer-frie	Printer-friendly Version		
Interactive Discussion			

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Variable name	Minimum value	Maximum value
SCIAMACHY scan direction (4 profiles retrieved E–W)	West	East
latitude of the SCIAMACHY observation	74° S	76° N
longitude of the SCIAMACHY observation	163° W	180° E
difference in time between collocations	–17.8 h	+ 18.5 h
difference in horizontal direction between collocations	4 km	800 km
difference in equivalent latitude between collocations	0°	15°
solar zenith angle during the SCIAMACHY observation	21.9°	89.8°
solar azimuth angle during the SCIAMACHY observation	17.3°	164.3°
station's name of the collocated lidar ozone profile	–	–
number of days since the launch of ENVISAT	154 d	3583 d
day of the year	0	364

5. Visual pattern analysis & correlating differences with EVs

Fig. 1. Flowchart of the proposed five-step methodology to explore origins of differences between ozone profiles. The self-organising map (SOM) is trained used a set of normalised differences (number of samples × number of altitudes). The SOM consists of grid formed by a number of rows by columns that is defined by the user. In this example, hexagonal-shaped neurons are used resulting in six direct neighbours instead of four direct neighbours in a regular rectangular grid (as indicated with the darker grey hexagons in the upper right corner of the figure; the marked part corresponds to a radius of one neuron around the central neuron). The output of the training are the organised differences, called codebook vectors, which can be shown as a map (called component plane) for each altitude bin (variation in the relative differences at one altitude visualised by different grey-tones). Each data sample with associated explanatory variables (EVs) can be linked to a neuron on the SOM by the mapping indices. Using these mapping indices, the EVs can be projected onto the SOM (gradient in EV visualised by different grey-shades). The codebook vectors can be clustered to study sub-groups (here, three clusters are created and shown with different colours).

Fig. 2. Fraction of not available difference data as a function of altitude.

Printer-friendly Version

Interactive Discussion

Fig. 3. Box plot of the relative differences at a given altitude. The lower and upper boundaries of the boxes indicate the lower and upper quartiles. The lines between these boundaries corresponds to the median. The dashed lines extending from the boxes show the range 1.5 times the interquartile range from the ends of each box. Outlier values outside this range are indicated with a +. The horizontal grey line indicates 0 % difference.

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 4. Correlation of the normalised relative differences between altitudes.

Fig. 6. Explanatory variables mapped on the SOM. From left to right: top row: SCIAMACHY scan direction, SCIAMACHY latitude, SCIAMACHY longitude; second row: difference in time between collocations, difference in distance between collocations, difference in equivalent latitude between collocations; third row: solar zenith angle during SCIAMACHY observation, solar azimuth angle during SCIAMACHY observation, lidar station name; lower row: days since launch of ENVISAT, day of the year. White pixels indicate neurons that are not used.

100

-100

tab

ohp mau

lau

alo

0

Fig. 7. Correlation between the codebook vectors at a given altitude and the mapped explanatory variables (EVs). EVs from left to right: scan direction, latitude of the SCIAMACHY observation, longitude of the SCIAMACHY observation, difference in time between collocations, difference in distance between collocations, difference in equivalent latitude between collocations, solar zenith angle during SCIAMACHY observation, solar azimuth angle during SCIAMACHY observation, days since the launch of ENVISAT and the day of the year.

iscussion Paper

Discussion Paper

Fig. 9. *k*-means classification of the codebook vectors into three classes.

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Fig. 10. Correlation between the codebook vectors at a given altitude and the mapped explanatory variables (EVs) for the three clusters shown in Fig. 9 (first cluster on top, etc.) as indicated in the lower right corner of each subplot. EVs from left to right: scan direction, latitude of the SCIAMACHY observation, longitude of the SCIAMACHY observation, difference in time between collocations, difference in distance between collocations, difference in equivalent latitude between collocations, solar zenith angle during SCIAMACHY observation, solar azimuth angle during SCIAMACHY observation, days since the launch of ENVISAT and the day of the year.

